
Amygdala-MP
(Multi Processor Extensions for Amygdala)

Rüdiger Koch rkoch@rkoch.org

March. 30, 2002 (version 0.2)

Abstract: Design issues and implementation of
multiprocessor extensions are discussed as implemented in
version 0.2 of Amygdala (SMP only). A short overview over
the planned clustering design is given.

1 Intro
Running a neural network simulation parallel on multiple, potentially a very large
number of CPUs appears very obvious. After all, the brain is considered a
massive parallel computer by many researchers [Moravec, 2]. The processing
power of a single silicon processor is much higher than that of an Amygdala
neuron. This means that we want to run a group of neurons on each CPU. The
groups have to be selected well from the entire neural network. Communication
channels have to be set up for neurons in different groups to exchange spikes.
The whole network needs to be synchronized because timing of incoming spikes
crucial for learning and determining spike times.

Currently, only SMP is implemented. This includes the processors with
hyperthreading and similar technologies (IBM Power4 and Intel Pentium 4 Xeon).
Thus only the SMP design is discussed in depth. Running on clusters and other
distributed memory architectures will be implemented soon. A design overview is
given at the end of this paper.

There is some ambiguity about the word "network" in this paper. It can either
mean a network of computing nodes and a neural network. We'll write NN for
neural network and Net for a network of computing nodes.

Code elements such as class names are in a fixed font.

Table of Contents
1 Intro..1
2 Multithreading or Multitasking...3
3 Threading and Object Model...3

3.1Synchronization...4
3.2Exchanging Spikes between Instances...5

4 Performance...6
4.1 Running the original buildlayer program..6
4.2 Running 2 buildlayer programs simultaneously..6
4.3 Running multiple buildlayer networks in synchronized threads.....................7

4.3.1 Running 2 NN in 2 threads:...7
4.3.2 Running 4 NNs in 4 threads..7

5 Future extensions...7
5.1 NOWs (Network Of Workstations) ...8

5.1.1Exchanging spikes...8
5.1.2Synchronization of Nodes...8
5.1.3Joining and leaving the cluster...9
5.1.4Starting and shutting down the cluster (controlling Node).......................9
5.1.5Loading and Saving...10
5.1.6The cluster configuration file..10
5.1.7UDP based Protocol..11

6 More future extensions...12
6.1 Massive Parallel Machines..12
6.2 Scaling very high..12

7References...13

2 Multithreading or Multitasking
Modern operating systems provide multitasking and multithreading. If the
hardware has multiple CPUs in a shared memory architecture (SMP), the
operating system tries to distribute the workload of different tasks (processes)
and threads to different CPUs. So the aim is to run groups of neurons in different
tasks or threads and let them communicate through appropriate interfaces. A
design using threads or different processes each have their own advantages:

Threads Tasks (Processes)
� Easy sync of NN (shared simulation

time)
� Because of efficient data exchange,

partitiononing can be arbitrary
� threads are more portable to non-

Unix platforms

� Easy to debug
� SMP and distributed memory

systems can have the same
semantic

We implement a multi-threaded model, mainly because the partitioning of the NN
and multi-threading issues can be hidden from the user. This is of particular
importance with the advent of multiprocessors-on-a-chip systems. In the near
future, all new computers will benefit from parallel execution so we want this
feature to be easy to use.

3 Threading and Object Model
When running an Amygdala NN on one CPU, all neurons are owned by one
single object of class Network which organizes the communication of the Neuron
objects and the simulation time. For multi-threading we run several MpNetwork
objects each holding only a part of the complete NN. Each instance of a
MpNetwork object has an object of class Instance associated with it. Since each
partition is represented by an MpNetwork instance we call a NN partition an
Amygdala instance. The reason for the Instance class to exist is to separate
communication issues from NN issues. So an MpNetwork object only has to
know about instance IDs, but does not know how to talk to them. This design
makes it easy to extend the current implementation by clustering. All these
objects are managed by a single Node object. (The name Node was chosen
because the functionality of the Node class will later be extended to talk to other
nodes of a cluster or MPP system.)

The handling of SpikeInput / SpikeOutput and Layer classes changed a little
compared to running in non MP mode. Since each Network object holds a

SpikeInput and a SpikeOutput object it is possible to have several I/O objects.
The SpikeInput object is replaced by an object of class MpSpikeInput for
MpNetwork objects. The MpSpikeInput class is an important part of the inter-
instance communication.

Currently, it is the user's responsibility to create MpNetwork objects and populate
each MpNetwork with Neurons. Later, high level functions will be provided in
class Node to take care of that so the user will not have to deal with MpNetwork
objects if he doesn't require more control.

Fig. 1 shows a typical configuration. 4 Threads run under the control of a Node
object. Each MpNetwork object has an associated Instance object.

3.1Synchronization
It is important to have a synchronized simulation time for all instances. To
achieve that the simulation time (simTime) is a static member of the class
Network which means that it is shared among all instances of MpNetwork.
Incrementation is done after all instances delivered all spikes of a time step. One
time step has 3 phases:

1. Instances run, delivering all spikes that are scheduled. When an instance
runs out of spikes it goes to sleep.

Node

Thread 3

Instance

MpNetwork

NeuronNeuronNeuronNeuronNeuron

Thread 2

Instance

MpNetwork

NeuronNeuronNeuronNeuronNeuron

Thread 1

Instance

MpNetwork

NeuronNeuronNeuronNeuronNeuron ...

2. The last running instance wakes up all the other instance so they can
deliver spikes that came in since they went to sleep. Then it goes to sleep
itself

3. The last running instance increments simTime and wakes up all other
instances

3.2Exchanging Spikes between Instances
In summary, delivering spikes to remote instances is done as:

1. A spiking Neuron calls Node::sendSpike() for each Instance that contains
receiving Neurons

2. The spike is transported to the remote Node if the instance is not local
3. The spike is delivered to MpSpikeInput
4. The spike is picked up by the receiving instance
5. The receiving instance resolves the receiving Neurons and the associated

virtual NeuronID
6. Spike gets delivered to all Neurons

When a Neuron sends a spike, it gets delivered to all local postsynaptic Neurons.
Then, the Neuron requests the Node to send each remote spike. Note that it is
the receiving Instance's task to resolve which of it's Neurons will receive the
spike. A Neuron only has information about which remote Instances have
postsynaptic Neurons but knows nothing about the Neurons themselves. Also,
the mode of transportation is chosen by Node.

The only mode of transportation implemented so far is calling the
MpInputSpike::QueueSpike() method directly. This call adds the spike to the
spikes vector until they are picked up by the receiving instance and delivered
directly to Neuron::InputSpike() after resolving which Neuron's are addressed.
Note that the spikes vector is the interface between two threads. The structure is
therefore protected by a mutex.

The dendrite table of a Neuron contains the relation NeuronID<=>weight. Since
NeuronID is not unique in the whole NN, but only within an instance, a virtual
NeuronID is introduced which maps to a pair <instanceID, neuronID> of the
sending instance. The virtual NeuronIDs are in the range 0xFF000000 to
0xFFFFFFFF. Real NeuronIDs may not be in this range when running multiple
instances. The virtual NeuronID is relevant only within a Neuron. With this
design, we avoid the need for two different dendrites, one for local and one for
remote so we can keep the Neuron class almost free of MP specific code.

Resolving both virtual NeuronID and the receiving Neuron is done with the
MpNetwork::AxonMap data structure:

A pair <virtual NeuronID, pointer_to_receiving_Neuron> is stored in a vector.
This vector represents the subset of synapses the remote axon is connected with
in this Instance. This remote axon is identified by the two hash_map structures

which use the remote InstanceID and the remote NeuronID as keys.

4 Performance
Several test were run in order to assess the potential of the current architecture.
For the tests, the buildlayer example of the samples directory was used. All tests
were carried out on a 2 processor SMP computer:

Mainboard: Tyan Thunder

Processor: 2xPentium II (Deschutes), 350 MHz, 512 KB cache

Memory: 128 MB on a 100 MHz bus

Kernel: Linux 2.4.2 (RH 7.1)

4.1 Running the original buildlayer program
The program was run on the SMP system. Since it is only one thread, only one
CPU was used while the other was idle.

real 2m42.846s

user 2m42.830s

sys 0m0.100s

4.2 Running 2 buildlayer programs simultaneously
real 2m47.096s 2m46.931s

user 2m44.540s 2m44.420s

sys 0m0.120s 0m0.180s

Now both CPUs are utilized to 100%. The small slowdown compared to (1.) is
likely due to memory I/O issues on the CPU bus. Also, other processes (xterm,
X, kernel) cannot longer be shifted onto the idle CPU - they have to be pre-
empted.

4.3 Running multiple buildlayer networks in synchronized
threads

4.3.1 Running 2 NN in 2 threads:
real 3m12.887s

user 5m28.830s

sys 0m0.670s

4.3.2 Running 4 NNs in 4 threads
real 6m6.186s

user 11m3.860s

sys 0m1.600s

The threads do not exchange spikes in this example. Other tests (not
documented here) show that the overhead of the spike exchange between
different Amygdala instances on a SMP system is neglectable compared to the
delivery of the spikes in the Neuron::InputSpike() function.

There are several factors for the slowdown. Most comes from synchronization.
Threads that finish their 100us time step first have to wait until the last thread
increments the simTime. It leaves the processors idle for about 14% of the time
when running 2 threads. This idle time can be utilized by using more threads,
though. The run with 4 threads suggest to run at least 2 times more threads than
there are CPUs in the system, especially if the nets are not symmetric as in this
example. Here, the idle time was reduced to less than 9%. Obviously there is
room for further improvement here. The rest of the slowdown comes from the
buildup of the NN which was not multi threaded. Buildup time thus doubled.

The test runs show excellent scalability on Intel SMP systems with 2 CPUs.
Since the number of concurrent threads is not limited, the system should scale
well on high end RISC systems.

It was assumed that Amygdala's bottleneck is memory I/O. This is obviously not
the case since Amygdala scales so well on a SMP system with a weakness in
memory I/O and strong in-cache execution.

5 Future extensions
SMP is rather limited. The largest SMP systems have around 100 CPUs and are
rather expensive. Distributed memory systems are cheaper and more scalable. A

cluster with 64 workstations costs only a fraction of a 64 CPU server. MPP
systems can scale very high. The strongest supercomputer, ASCI White, is such
a system (IBM SP2). It runs on more than 8000 CPUs with a main memory of
6TBytes. IBM already announced Blue Gene, a massive parallel system with 1
Million CPUs and 1PetaByte of memory. If Moore's law holds, such systems
should be available to the public within a few years. Blue Gene is notable in so
far as it might be the first computer with memory and processing power roughly
equal to that of the human brain [Moravec, 2]

It should be noted that unlike SMP the partitioning of the NN must be carefully
chosen to minimize spikes delivered to remote nodes. How much depends on
bandwidth and latency of the underlying network.

5.1 NOWs (Network Of Workstations)
NOWs communicate via TCP/IP. While it is possible to use a messaging system
such as MPI or PVM it is much more efficient and also simpler to use sockets
and UDP. The problem with MPI or PVM over TCP is not so much the additional
overhead but the guaranteed sequence. If a packet is lost during transmission
the kernel stores all data until the packet is successfully re-sent. This causes the
hangs we all experience during Web surfing. Since a NN is very tolerant against
noise we can afford the loss of spikes and even their duplication. The order of
packages is completely irrelevant. Immediate delivery is needed, however.

It is crucial that all Nodes run synchronized. There is no need for hard
synchronization, though – the Nodes don't need to have exactly the same
simTime. It is advantageous to relax synchronization requirements as much as
possible for performance reasons.

The Node spawns a listener thread to receive incoming messages and hand
them off to the target thread(s) as fast as possible. Nodes are identified by their
Node ID which in case of a IPv4 network is their struct sockaddr_in
datatype, a 32 bit integer.

5.1.1Exchanging spikes
It was already mentioned that spike exchange uses UDP as transport protocol.
The Node object is managing the exchange of spikes. The listener thread is then
feeding incoming spike messages into the MpSpikeInput class in the same way
as the other local threads. Sending spikes happens immediatelly. An Instance
that wants to send a remote spike requests this from the Node.

5.1.2Synchronization of Nodes
Every Node decides by itself when to increment simTime. When a Node
increments it's simTime it notifies all other Nodes with an [INCREMENT
SIMTIME] multicast message. The decision of a Node to increment is based on 3

conditions:

1. The Node itself finished this timestep. No spikes are pending.

2. No spikes are to be expected for this timestep. This means that the Node
Ffastest is not too far ahead of the slowest Node. In this case F waits until it
gets a notification from the slowest Node Slowest that it incremented or, since
we are using UDP where packages can get lost, it waits until any other Node X
passed it. To find out if the slowest Node is in fact a dead node A checks for
incoming spike requests from S.

3. If the cluster is large it can be configured to continue even if Nodes are dead.
In this case, Node F can send out a [IS NODE S DEAD?] request. If S does
not react on this before the majority of all other Nodes confirmed their opinion
that S is dead with [DEAD_NODE] messages, then S will be assumed dead
and further messages from S will be ignored. A can increment simTime.

5.1.3Joining and leaving the cluster
Leaving a cluster requires no precautions on other Nodes. The other Nodes will
notice that a Node is not active any more and will declare it dead with a majority
decision. Spikes are no longer sent but [INCREMENT SIMTIME] messages still
are so the node can sync when joining the cluster later again.

A dead Node may join a cluster again later by sending an [ALIVE AGAIN]
message. It multicasts this message until it received a [ALIVE AGAIN ACK]
message from all other Nodes. An [ALIVE AGAIN ACK] is followed by a list of all
dead Nodes [DEAD_NODE] so the reincarnated Node can update it's database
of dead Nodes. A reincarnated Node goes into operational mode when it
received the [ALIVE AGAIN ACK] confirmation from a majority of all Nodes in the
cluster.

5.1.4Starting and shutting down the cluster (controlling Node)
Starting and shutting down the cluster requires a controlling Node. A controlling
Node will in most cases be a GUI application. Once the cluster is running the
controlling Node is not required except for performing operations such as saving
the Amygdala network or shutting down.

A cluster is started up by first running all Nodes with suitable means, either
manually or via rsh, ssh or any cluster management tool. A Node first parses the
command line options by calling the static function at the beginning of the main()
function:

Node::Init(int &argc, char* argv[]);

When the function returns, all recognized command line options are stripped so
the program can start doing it's own parsing of command line options. Then the
Node loads the cluster configuration file. Command line options recognized are:

--node-id=12.34.56.78 This must be given in case the computer has
multiple IP addresses. It must match one of them. The node will then bind
to this IP address.

--config=http://foo.bar/config.xml This is mandatory

Nodes that are up are multicasting [STANDBY] messages to indicate their
availability and the fact that they did not yet receive [STANDBY] messages from
all other Nodes. Once a Node collected [STANDBY] messages from all other
Nodes it starts sending [READY_TO_GO] messages to the controlling Node. It
also starts receiving [SPIKE] messages. When the controlling Node has all
[READY_TO_GO] messages it expects it multicasts [GO] messages until it
received a [RUNNING] message from all Nodes.

5.1.5Loading and Saving
The cluster can only load a network when starting up by taking a command line
parameter pointing to the cluster config file which contains the necessary data.
This file contains the locations of the Network to load and save. Loading can
either be local, via NFS or via HTTP by specifying the appropriate http:// or file:/
URL in the configuration file. Saving is always via file:/.

To Save an Amygdala network running on a cluster the cluster must be halted
first. To achieve that the controlling Node sends out [STANDBY] messages.
Every node that receveives such [STANDBY] message goes into standby itself.
A Node that has received [STANDBY] or [READY_TO_GO] messages from all
other Nodes goes into ready_to_go mode and sends [READY_TO_GO]
messages. The controlling Node then multicasts [SAVE] messages until it
receives a [STANDBY] or [READY_TO_GO] message from all Nodes. Once the
controlling Node has received [READY_TO_GO] from all Nodes it may start the
cluster again.

5.1.6The cluster configuration file
The cluster configuration file is needed to bootstrap the cluster. It's location is
specified as a command line parameter and can be either a http:// or a file:/ URL.
The format is XML conforming to the cluster.dtd file. It specifies:

� The multicast group
� Which node runs which Instances
� The locations from where to load the Amygdala files
� The locations where to save (optional)

5.1.7UDP based Protocol
Since the protocol includes integers they have to be ordered in network byte
order, particularly the identifiers AmTimeInt and AmIdInt. There is no security
built into the protocol. Every package received is trusted. Nodes are
distinguished by their IP address. Multicast messages are marked.

Message type Memory allocation

[ALIVE AGAIN]

(multicast)

struct alive_again{
 char message_type;
};

[ALIVE AGAIN ACK] struct alive_again_ack{
 char message_type;
};

[DEAD_NODE] struct dead_node{
 char message_type;
 struct sockaddr_in;
};

[GO]

(multicast)

struct is_node_dead {
 char message_type;
};

[INCREMENT SIMTIME]
(multicast)

struct increment_simtime {
 char message_type;
 AmTimeInt NewTime;
};

[IS NODE S DEAD?]
(multicast)

struct is_node_dead {
 char message_type;
};

[STANDBY]

(multicast)

struct standby {
 char message_type;
};

[READY_TO_GO] struct ready_to_go {
 char message_type;
};

[RUNNING] struct running {
 char message_type;
};

[SHUTDOWN]

(multicast)

struct shutdown {
 char message_type;
};

[SPIKE] struct spike {
 char message_type;
 AmIdInt SendingInstanceID;
 AmTimeInt SpikeTime
};

6 More future extensions

6.1 Massive Parallel Machines
Machines of this class are very similar to NOWs. They also have different nodes
with each node running a copy of the operating system. Their bus system is
considerably faster and has much lower latency than an ethernet, however. If the
same UDP messaging as for NOWs can be used or if MPI messaging is more
suitable has to be investigated.

6.2 Scaling very high
A cluster as described is not scalable beyond a few dozen Nodes. To allow even
higher scalability it is possible to use multiple multicast groups that are partly
overlapping. Certain Nodes in such a cluster would belong to 2 or more multicast
groups. A requirement would be that spikes are not sent beyond a multicast
group. Such a multicast group can then be considered a compartment of a whole
brain. The following image illustrates such an arrangement. Each multicast group
is represented by a sphere of a certain color:

This image represents a simple variant. In a more complex arrangement it would
be possible to have more connectivity of multicast groups than shown here, for
instance overlapping the red group in the middle with the gray group at the
bottom. To make such an arrangement effective, synchronization takes place
only within any given multicast group and their direct neighbors.

7References
1. Dipl.-Ing. Cyprian Graßmann, Prof. Dr. Joachim Kaufmann: Distributed,

Event Driven Simulation of Spiking Neural Networks.
http://web.informatik.uni-bonn.de/II/ag-anlauf/spikelab/NC98.pdf

2. Moravec, Hans, Mind Children, Harvard University Press, 1988.

